9,494 research outputs found

    Image-charge induced localization of molecular orbitals at metal-molecule interfaces: Self-consistent GW calculations

    Get PDF
    Quasiparticle (QP) wave functions, also known as Dyson orbitals, extend the concept of single-particle states to interacting electron systems. Here we employ many-body perturbation theory in the GW approximation to calculate the QP wave functions for a semi-empirical model describing a π\pi-conjugated molecular wire in contact with a metal surface. We find that image charge effects pull the frontier molecular orbitals toward the metal surface while orbitals with higher or lower energy are pushed away. This affects both the size of the energetic image charge shifts and the coupling of the individual orbitals to the metal substrate. Full diagonalization of the QP equation and, to some extent, self-consistency in the GW self-energy, is important to describe the effect which is not captured by standard density functional theory or Hartree-Fock. These results should be important for the understanding and theoretical modeling of electron transport across metal-molecule interfaces.Comment: 7 pages, 6 figure

    Local Density of States and Angle-Resolved Photoemission Spectral Function of an Inhomogeneous D-wave Superconductor

    Full text link
    Nanoscale inhomogeneity seems to be a central feature of the d-wave superconductivity in the cuprates. Such a feature can strongly affect the local density of states (LDOS) and the spectral weight functions. Within the Bogoliubov-de Gennes formalism we examine various inhomogeneous configurations of the superconducting order parameter to see which ones better agree with the experimental data. Nanoscale large amplitude oscillations in the order parameter seem to fit the LDOS data for the underdoped cuprates. The one-particle spectral function for a general inhomogeneous configuration exhibits a coherent peak in the nodal direction. In contrast, the spectral function in the antinodal region is easily rendered incoherent by the inhomogeneity. This throws new light on the dichotomy between the nodal and antinodal quasiparticles in the underdoped cuprates.Comment: 5 pages, 9 pictures. Phys. Rev. B (in press

    Climate-responsive urban and building design

    Get PDF
    Presentation at the Experts' Panel in New Fayoum, Egypt, organised by the Egyptian Housing and Building Research Centre from the 25th to the 27th of September 2012 in Egypt, as part of New Medina Project, under the European program named CIUDAD

    Ecological Building: a sustainable approach to design, construction, and operation of buildings

    Get PDF
    Lecture held for the High Level Forum on "Clean Energy Technologies", Session 4 (Green Society Concept and Practice), of the EC2 (Europe-China Clean Energy Centre), at SIEEB, Tsinghua, Beijing, March 29, 2011

    The Role of Intimacy in the Prosecution and Sentencing of Capital Murder Cases in the U.S. Armed Forces, 1984-2005

    Get PDF
    Article published in the New Mexico Law Review

    Gas physical conditions and kinematics of the giant outflow Ou4

    Full text link
    Ou4 is a recently discovered bipolar outflow with a projected size of more than one degree in the plane of the sky. It is apparently centred on the young stellar cluster -whose most massive representative is the triple system HR8119- inside the HII region Sh 2-129. The driving source, the nature, and the distance of Ou4 are not known. Deep narrow-band imagery of the whole nebula at arcsec resolution was obtained to study its morphology. Long-slit spectroscopy of the tips of the bipolar lobes was secured to determine the gas ionization mechanism, physical conditions, and line-of-sight velocities. An estimate of the proper motions at the tip of the south lobe using archival images is attempted. The existing multi-wavelength data for Sh 2-129 and HR 8119 are also comprehensively reviewed. The morphology of Ou4, its emission-line spatial distribution, line flux ratios, and the kinematic modelling adopting a bow-shock parabolic geometry, illustrate the expansion of a shock-excited fast collimated outflow. The radial velocities and reddening are consistent with those of Sh 2-129 and HR 8119. The improved determination of the distance to HR8119 (composed of two B0 V and one B0.5 V stars) and Sh 2-129 is 712 pc. We identify in WISE images a 5 arcmin-radius (1 pc at the distance above) bubble of emission at 22 micron emitted by hot (107 K) dust, located inside the central part of Ou4 and corresponding to several [O III] features of Ou4. The apparent position and the properties studied in this work are consistent with the hypothesis that Ou4 is located inside the Sh 2-129 HII region, suggesting that it was launched some 90 000 yrs ago by HR8119. The outflow total kinetic energy is estimated to be ~4e47~ergs. However, the alternate possibility that Ou4 is a bipolar planetary nebula, or the result of an eruptive event on a massive AGB or post-AGB star not yet identified, cannot be ruled out.Comment: Accepted for publication in Astronomy and Astrophysics. Also available at http://hal.archives-ouvertes.fr/hal-0102228
    corecore